polynomials

This commit is contained in:
Mirek Kratochvil 2012-04-01 23:44:18 +02:00
parent 7f0121294c
commit 5cbbaa2151
2 changed files with 109 additions and 17 deletions

View file

@ -4,6 +4,13 @@
#include <vector>
//STL wraparound, because writing (*this)[i] everywhere is clumsy
#define _ccr_declare_vector_item \
inline reference item(size_type n) \
{ return (*this)[n]; }; \
inline const_reference item(size_type n) const \
{ return (*this)[n]; };
namespace ccr
{
@ -15,10 +22,8 @@ typedef unsigned int uint;
*/
class bvector : public std::vector<bool>
{
//STL wraparound, because writing (*this)[i] is clumsy
inline reference item (size_type n) {
return (*this) [n];
}
protected:
_ccr_declare_vector_item
public:
uint hamming_weight();
};
@ -39,9 +44,8 @@ public:
*/
class matrix : public std::vector<bvector>
{
inline reference item (size_type n) {
return (*this) [n];
}
protected:
_ccr_declare_vector_item
public:
matrix operator* (const matrix&);
@ -57,9 +61,8 @@ public:
*/
class permutation : public std::vector<uint>
{
inline reference item (size_type n) {
return (*this) [n];
}
protected:
_ccr_declare_vector_item
public:
void compute_inversion (permutation&);
@ -75,13 +78,16 @@ public:
*/
class polynomial : public bvector
{
inline reference item (size_type n) {
return (*this) [n];
}
public:
void strip();
uint degree() const;
void add (const polynomial&);
void mod (const polynomial&);
void mult (const polynomial&);
polynomial gcd (polynomial);
bool is_irreducible();
void generate_random_irreducible (uint n, prng&);
vector operator<< (uint);
};
/*

View file

@ -3,14 +3,100 @@
using namespace ccr;
uint polynomial::degree() const
{
uint r = -1;
for (uint i = 0; i < size(); ++i) if (item (i) ) r = i;
return r;
}
void polynomial::strip()
{
resize (degree() + 1);
}
void polynomial::add (const polynomial&f)
{
uint df = f.degree();
if (df > degree() ) resize (df + 1);
for (uint i = 0; i <= df; ++i) item (i) = item (i) ^ f[i];
}
void polynomial::mod (const polynomial&f)
{
uint df = f.degree();
uint d;
// while there's place to substract, reduce by x^(d-df)-multiply of f
while ( (d = degree() ) >= df) {
for (uint i = 0; i <= df; ++i)
item (i + d - df) = item (i + d - df) ^ f[i];
}
strip();
}
void polynomial::mult (const polynomial&b)
{
polynomial a = *this;
clear();
uint i, j, da, db;
da = a.degree();
db = b.degree();
resize (da + db + 1, 0);
for (i = 0; i <= da; ++i)
if (a[i]) for (j = 0; j <= db; ++j)
item (i + j) = item (i + j) ^ b[j];
}
polynomial polynomial::gcd (polynomial b)
{
polynomial a = *this;
//eukleides
if (a.degree() < 0) return b;
for (;;) {
if (b.degree() < 0) return a;
a.mod (b);
if (a.degree() < 0) return b;
b.mod (a);
}
//unreachable
return polynomial();
}
bool polynomial::is_irreducible()
{
//Ben-Or irreducibility test
polynomial xi; //x^(2^i) in our case
polynomial xmodf, t;
return false;
xmodf.resize (2); //precompute (x mod f)
xmodf[0] = 0;
xmodf[1] = 1; //x
xmodf.mod (*this); //mod f
uint n = degree();
for (uint i = 1; i <= n / 2; ++i) {
t = xi;
t.mult (xi); //because mult would destroy xi on xi.mult(xi)
xi = t;
t.add (xmodf);
t = t.gcd (*this);
if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1
return false;
}
return true;
}
void polynomial::generate_random_irreducible (uint size, prng&rng)
void polynomial::generate_random_irreducible (uint s, prng & rng)
{
resize (s + 1);
item (s) = 1; //degree s
item (0) = 1; //not divisible by x^1
for (uint i = 1; i < s; ++i) item (i) = rng.random (2);
while (!is_irreducible() ) {
uint pos = 1 + rng.random (s - 1);
item (pos) = !item (pos);
}
}