serialization and cfs_qd work

This commit is contained in:
Mirek Kratochvil 2012-12-02 12:50:29 +01:00
parent a14d1088e7
commit fb54056331
7 changed files with 775 additions and 82 deletions

View file

@ -207,6 +207,11 @@ public:
void compute_inversion (permutation&) const; void compute_inversion (permutation&) const;
void generate_random (uint n, prng&); void generate_random (uint n, prng&);
void generate_identity (uint n) {
resize (n);
for (uint i = 0; i < n; ++i)
item (i) = i;
}
//TODO permute_inv is easy, do it everywhere //TODO permute_inv is easy, do it everywhere
template<class A, class R> void permute (const A&a, R&r) const { template<class A, class R> void permute (const A&a, R&r) const {
@ -425,6 +430,9 @@ public:
uint signature_size() { uint signature_size() {
return plain_size(); return plain_size();
} }
uint signature_weight() {
return plain_weight();
}
sencode* serialize(); sencode* serialize();
bool unserialize (sencode*); bool unserialize (sencode*);
@ -454,6 +462,9 @@ public:
uint signature_size() { uint signature_size() {
return plain_size(); return plain_size();
} }
uint signature_weight() {
return plain_weight();
}
sencode* serialize(); sencode* serialize();
bool unserialize (sencode*); bool unserialize (sencode*);
@ -480,14 +491,10 @@ public:
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2 gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
uint T; //the QD's t parameter is 2^T. uint T; //the QD's t parameter is 2^T.
permutation block_perm; //order of blocks permutation block_perm; //order of blocks
permutation hperm; //block permutation of H block used to get G
std::vector<uint> block_perms; //dyadic permutations of blocks std::vector<uint> block_perms; //dyadic permutations of blocks
permutation hperm; //block permutation of H block used to get G
//derivable stuff //derivable stuff
std::vector<uint> Hsig; //signature of canonical H matrix
std::vector<uint> support; //computed goppa support
uint omega;
//cols of check matrix of g^2(x) //cols of check matrix of g^2(x)
std::vector<polynomial> Hc; std::vector<polynomial> Hc;
//pre-permuted positions of support rows //pre-permuted positions of support rows
@ -497,10 +504,10 @@ public:
int prepare(); int prepare();
uint cipher_size() { uint cipher_size() {
return (1 << T) * block_count; return (1 << T) * hperm.size();
} }
uint plain_size() { uint plain_size() {
return (1 << T) * (block_count - fld.m); return (1 << T) * (hperm.size() - fld.m);
} }
sencode* serialize(); sencode* serialize();
@ -511,7 +518,7 @@ class pubkey
{ {
public: public:
uint T; uint T;
std::vector<bvector> qd_sigs; matrix qd_sigs;
int encrypt (const bvector&, bvector&, prng&); int encrypt (const bvector&, bvector&, prng&);
@ -521,15 +528,87 @@ public:
uint plain_size() { uint plain_size() {
return (1 << T) * qd_sigs.size(); return (1 << T) * qd_sigs.size();
} }
sencode* serialize();
bool unserialize (sencode*);
}; };
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b); int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b);
} }
/*
* QD-CFS
*
* according to "Quasi-dyadic CFS signatures" by Baretto, Cayrel, Misoczki,
* Niebuhr.
*
* As always with Niederreiter, hash must be of weight t (=1<<T)
*/
namespace cfs_qd
{
class privkey
{
public:
std::vector<uint> essence;
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
uint T, t; //size of blocks is 1<<T, t is error correction capability
permutation block_perm; //order of blocks
std::vector<uint> block_perms; //dyadic permutations of blocks
//derivable stuff
polynomial g; //goppa
std::vector<polynomial> sqInv; //sqroot mod g
//pre-permuted positions of support rows
std::vector<uint> support_pos;
std::vector<polynomial> syndS;
int sign (const bvector&, bvector&, uint d, uint attempts, prng&);
int prepare();
uint hash_size() {
return t * fld.m;
}
uint signature_size() {
return (1 << T) * block_perms.size();
}
uint signature_weight() {
return t;
}
sencode* serialize();
bool unserialize (sencode*);
};
class pubkey
{
public:
uint t, T;
//cols of H
std::vector<bvector> qd_sigs;
int verify (const bvector&, const bvector&, uint);
uint hash_size() {
return t * qd_sigs.size();
}
uint signature_size() {
return qd_sigs[0].size();
}
uint signature_weight() {
return t;
}
sencode* serialize();
bool unserialize (sencode*);
};
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint t, uint b);
}
/* /*
* McEliece on Overlapping Chain of Goppa Codes * McEliece on Overlapping Chain of Goppa Codes
* *
* Similar to Hamdi's Chained BCH Codes, but with improvement. * Similar to Hamdi's Chained BCH Codes, but with improvements.
* *
* This is experimental, unverified, probably insecure, but practical scheme * This is experimental, unverified, probably insecure, but practical scheme
* that achieves good speed, probability and non-exponential key size for full * that achieves good speed, probability and non-exponential key size for full

580
lib/cfs_qd.cpp Normal file
View file

@ -0,0 +1,580 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::cfs_qd;
#include "decoding.h"
#include "qd_utils.h"
#include <set>
int cfs_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint m, uint T, uint t, uint block_discard)
{
priv.fld.create (m);
priv.T = T;
uint block_size = 1 << T;
if (t > block_size) return 2;
priv.t = t;
//convenience
gf2m&fld = priv.fld;
std::vector<uint>&essence = priv.essence;
std::vector<uint> support, Hsig;
polynomial g;
uint i, j;
//prepare for data
Hsig.resize (fld.n);
support.resize (fld.n);
essence.resize (m + 1);
//note that q=2^m, algo. n=q/2, log n = m-1
//retry generating until goppa code is produced.
for (;;) {
std::cout << "attempt" << std::endl;
std::set<uint> used;
used.clear();
//first off, compute the H signature
Hsig[0] = choose_random (fld.n, rng, used);
essence[m] = fld.inv (Hsig[0]);
//essence[m] is now used as precomputed 1/h_0
for (uint s = 0; s < m; ++s) {
i = 1 << s; //i = 2^s
Hsig[i] = choose_random (fld.n, rng, used);
essence[s] = fld.add (essence[m], fld.inv (Hsig[i]) );
used.insert (fld.inv (essence[s]) );
for (j = 1; j < i; ++j) {
uint hij = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[m]
) ) );
if ( (!Hsig[i]) || (!Hsig[j]) ) hij = 0;
Hsig[i + j] = hij;
if (hij) {
used.insert (Hsig[i + j]);
/*used.insert (fld.inv
(fld.add
(fld.inv (Hsig[i + j]),
essence[m]) ) );*/
}
}
}
std::cout << "Gen Hsig: ";
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
std::cout << std::endl;
//let's play with blocks.
uint block_size = 1 << T,
h_block_count = fld.n / block_size,
block_count = h_block_count - block_discard;
//check if we have enough good blocks.
std::vector<bool> block_status;
uint badblocks;
block_status.resize (h_block_count);
badblocks = 0;
for (i = 0; i < h_block_count; ++i) {
block_status[i] = true;
for (j = 0; j < block_size; ++j)
if (!Hsig[i * block_size + j]) {
block_status[i] = false;
break;
}
if (!block_status[i]) ++badblocks;
}
std::cout << "badblocks: " << badblocks << std::endl;
if (badblocks > block_discard) continue; //don't have enough good blocks
if (!block_status[0]) continue; //cannot assemble goppa poly
std::cout << "lol contd." << std::endl;
//reconstruct g
used.clear();
g.clear();
g.resize (1, 1); //g(x)=1 so we can multiply it
polynomial tmp;
tmp.resize (2, 1); //tmp(x)=x-1
bool consistent = true;
for (i = 0; i < t; ++i) {
//tmp(x)=x-z=x-(1/h_i) where h_i is squared!
tmp[0] = fld.inv (Hsig[i]);
if (used.count (tmp[0]) ) {
consistent = false;
break;
}
used.insert (tmp[0]);
g.mult (tmp, fld);
}
if (!consistent) continue; //retry
std::cout << "lol have g: " << g;
//compute the support, retry if it has two equal elements.
for (i = 0; i < fld.n; ++i) {
if (!block_status[i / block_size]) continue;
support[i] = fld.add (
fld.inv (Hsig[i]),
essence[m]);
std::cout << "support " << i << " = " << support[i] << std::endl;
if (used.count (support[i]) ) {
std::cout << "support inconsistent at " << i << std::endl;
++badblocks;
block_status[i / block_size] = false;
break;
}
used.insert (support[i]);
}
std::cout << "bad: " << badblocks << std::endl;
if (badblocks > block_discard) continue;
//assemble blocks to bl
std::vector<polynomial> bl, blp;
bl.resize (h_block_count);
for (i = 0; i < h_block_count; ++i) {
bl[i].resize (block_size);
for (j = 0; j < block_size; ++j)
bl[i][j] = Hsig[i * block_size + j];
}
//permute the blocks. first move the damaged to discard area
priv.block_perm.generate_identity (h_block_count);
uint oks = h_block_count;
for (i = 0; i < oks; ++i)
if (!block_status[i]) {
std::cout << "removing one" << std::endl;
--oks;
priv.block_perm[i] = oks;
priv.block_perm[oks] = i;
//swap block statuses as well
bool tmp = block_status[i];
block_status[i] = block_status[oks];
block_status[oks] = tmp;
--i;
}
std::cout << "BLOCK " << priv.block_perm;
permutation rest_perm;
rest_perm.generate_random (oks, rng);
//permute the undamaged part of block_perm by hand TODO FIXME
//for (i = 0; i < oks; ++i) rest_perm[i] = priv.block_perm[rest_perm[i]];
//for (i = 0; i < oks; ++i) priv.block_perm[i] = rest_perm[i];
//now we can safely permute and discard blocks
priv.block_perm.permute (bl, blp);
blp.resize (block_count);
//permute individual blocks
priv.block_perms.resize (block_count);
bl.resize (blp.size() );
for (i = 0; i < block_count; ++i) {
priv.block_perms[i] = rng.random (block_size);
permutation::permute_dyadic (priv.block_perms[i],
blp[i], bl[i]);
}
//construct H
pub.qd_sigs.resize (fld.m);
bvector col;
bvector block;
for (i = 0; i < fld.m; ++i)
pub.qd_sigs[i].resize (block_count * block_size);
for (i = 0; i < block_count; ++i) {
col.from_poly_cotrace (bl[i], fld);
for (j = 0; j < fld.m; ++j) {
col.get_block (j * block_size,
block_size, block);
pub.qd_sigs[j].set_block
(block, block_size * i);
}
}
//finish the pubkey
pub.T = T;
pub.t = t;
return 0;
}
}
int privkey::prepare()
{
uint s, i, j, k;
std::vector<uint> Hsig, support;
uint omega;
uint block_count = block_perms.size(),
block_size = 1 << T;
//compute H signature from essence
Hsig.resize (fld.n);
Hsig[0] = fld.inv (essence[fld.m]);
for (s = 0; s < fld.m; ++s) {
i = 1 << s; //i = 2^s
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m]) );
for (j = 1; j < i; ++j)
Hsig[i + j] = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[fld.m]
) ) );
}
std::cout << "Gen Hsig: ";
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
std::cout << std::endl;
//goppa polynomial with omega=0
std::set<uint> used;
used.clear();
polynomial tmp;
g.clear();
g.resize (1, 1); //g(x)=1
tmp.clear();
tmp.resize (2, 1); //tmp(x)=x+1
for (i = 0; i < t; ++i) {
tmp[0] = fld.inv (Hsig[i]); //tmp(x)=x+1/h_i
if (used.count (tmp[0]) )
return 1;
std::cout << tmp[0] << std::endl;
used.insert (tmp[0]);
g.mult (tmp, fld);
}
std::cout << "HERE 1" << std::endl;
//compute the support with omega=0
support.resize (fld.n);
for (i = 0; i < fld.n; ++i) {
//don't compute with discarded support
if (block_perm[i / block_size] >= block_count) continue;
support[i] = fld.add
(fld.inv (Hsig[i]),
essence[fld.m]);
std::cout << "support " << i << " = " << support[i] << std::endl;
if (used.count (support[i]) ) //invalid support
return 1;
used.insert (support[i]);
}
std::cout << "HERE LOLOLOLOLOL" << std::endl;
//choose omega
omega = fld.n;
for (i = 0; i < fld.n; ++i)
if (!used.count (i) ) {
omega = i;
break;
}
if (omega == fld.n) return 1;
//modify support to omega-ized version
for (i = 0; i < support.size(); ++i)
support[i] = fld.add (support[i], omega);
//modify g to omega-ized version
g.clear();
tmp.clear();
g.resize (1, 1); //g(x)=1
tmp.resize (2, 1); //tmp(x)=x+1
for (i = 0; i < t; ++i) {
tmp[0] = fld.add (fld.inv (Hsig[i]), omega);
g.mult (tmp, fld);
}
g.compute_square_root_matrix (sqInv, fld);
// prepare permuted support, from that prepare permuted check matrix
// (so that it can be applied directly)
uint pos;
std::vector<uint> sbl1, sbl2, permuted_support;
sbl1.resize (block_size);
sbl2.resize (block_size);
permuted_support.resize (block_size * block_count);
//permute support
for (i = 0; i < fld.n / block_size; ++i) {
pos = block_perm[i];
if (pos >= block_count) continue; //was discarded
//permute i-th block of support
for (j = 0; j < block_size; ++j)
sbl1[j] = support[j + i * block_size];
permutation::permute_dyadic (block_perms[pos], sbl1, sbl2);
//store support to permuted support
for (j = 0; j < block_size; ++j)
permuted_support[j + pos * block_size] = sbl2[j];
}
//convert the permuted support to actual lookup
support_pos.clear();
//fld.n in support lookup means that it isn't there (we don't have -1)
support_pos.resize (fld.n, fld.n);
for (i = 0; i < block_size * block_count; ++i)
support_pos[permuted_support[i]] = i;
/*
* TODO move this to separate function
*
* prepare the matrix to compute decodable syndrome from QD matrix. From Barreto's slides:
*
* A is public check matrix
* H is private check matrix producing decodable syndromes
*
* H=SA for some S
* therefore if
*
* synd = A * codeword
*
* then
*
* S*synd = H*codeword
*
* and S = H * A^T * (A * A^T)^-1
*/
std::vector<std::vector<uint> > ma, mb, tmpa, tmph;
std::vector<uint> t1, t2;
/*
* First, precompute the matrices A and H
*/
tmpa.resize (t);
tmph.resize (t);
for (i = 0; i < t; ++i) {
tmpa[i].resize (fld.n);
tmph[i].resize (fld.n);
}
for (i = 0; i < t; ++i)
permutation::permute_dyadic (i, Hsig, tmpa[i]);
std::cout << "TMPA" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < fld.n; ++j) std::cout << tmpa[i][j] << ' ';
std::cout << std::endl;
}
polynomial tmpcol;
for (i = 0; i < fld.n; ++i) {
tmpcol.resize (2);
tmpcol[0] = support[i];
tmpcol[1] = 1;
tmpcol.inv (g, fld);
tmpcol.resize (t, 0);
for (j = 0; j < t; ++j) tmph[j][i] = tmpcol[j];
}
/*
* compute H * H^T to ma and A * H^T to mb.
*/
ma.resize (t);
mb.resize (t);
for (i = 0; i < t; ++i) {
ma[i].resize (t, 0);
mb[i].resize (t, 0);
}
for (i = 0; i < t; ++i) for (j = 0; j < t; ++j) {
for (k = 0; k < fld.n; ++k) {
ma[i][j] = fld.add (ma[i][j], fld.mult (tmph[i][k], tmph[j][k]) );
mb[i][j] = fld.add (mb[i][j], fld.mult (tmpa[i][k], tmph[j][k]) );
}
}
std::cout << "MA" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < t; ++j) std::cout << ma[i][j] << ' ';
std::cout << std::endl;
}
std::cout << "MB" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < t; ++j) std::cout << mb[i][j] << ' ';
std::cout << std::endl;
}
/*
* now invert mb into ma as (mb|ma) to (I|ma*mb^-1)
*
* (result will be transposed, but that's actually good for our purpose)
*/
uint x;
//gauss step
for (i = 0; i < t; ++i) {
//find pivot
for (j = i; j < t; ++j) if (mb[j][i] != 0) break;
if (j >= t) return 1; //no pivot -> not invertible
if (j > i) {
ma[j].swap (ma[i]);
mb[j].swap (mb[i]);
}
//normalize
x = fld.inv (mb[i][i]);
for (j = 0; j < t; ++j) {
ma[i][j] = fld.mult (ma[i][j], x);
mb[i][j] = fld.mult (mb[i][j], x);
}
//zero rows below
for (j = i + 1; j < t; ++j) {
x = mb[j][i];
if (x == 0) continue;
for (k = 0; k < t; ++k) {
ma[j][k] = fld.add (ma[j][k], fld.mult (x, ma[i][k]) );
mb[j][k] = fld.add (mb[j][k], fld.mult (x, mb[i][k]) );
}
}
}
//jordan step
std::cout << "jordan step..." << std::endl;
for (i = 0; i < t; ++i) {
for (j = i + 1; j < t; ++j) {
x = mb[t - j - 1][t - i - 1];
if (x == 0) continue;
for (k = 0; k < t; ++k) {
ma[t - j - 1][k] = fld.add (ma[t - j - 1][k], fld.mult (x, ma[t - i - 1][k]) );
mb[t - j - 1][k] = fld.add (mb[t - j - 1][k], fld.mult (x, mb[t - i - 1][k]) );
}
}
}
//result is now transposed in ma.
syndS.resize (t);
for (i = 0; i < t; ++i) {
syndS[i].resize (t);
for (j = 0; j < t; ++j) syndS[i][j] = ma[i][j];
}
std::cout << "SyndS is OKAY!" << std::endl;
polynomial decsynd, loc;
for (i = 0; i < t; ++i)
decsynd.add_mult (syndS[i], Hsig[i], fld);
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
std::cout << "TEST LOCATOR: " << loc;
return 0;
}
int privkey::sign (const bvector& hash, bvector&signature,
uint delta, uint attempts, prng&rng)
{
if (hash.size() != hash_size() ) return 2;
polynomial synd, decsynd, tmp, loc;
bvector ev, h2;
uint i;
for (uint att = 0; att < attempts; ++att) {
h2 = hash;
for (i = 0; i < delta; ++i) {
uint p = rng.random (h2.size() );
h2[p] = !h2[p];
}
h2.to_poly_cotrace (synd, fld);
std::cout << "SYND" << synd;
decsynd.clear();
for (i = 0; i < t; ++i)
decsynd.add_mult (syndS[i], synd[i], fld);
std::cout << "SYND PREP" << decsynd;
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
if (!evaluate_error_locator_trace (loc, ev, fld) ) continue;
//we might have it!
std::cout << ev;
signature.clear();
signature.resize (signature_size(), 0);
for (i = 0; i < fld.n; ++i) if (ev[i]) {
uint epos = support_pos[i];
if (epos == fld.n) break; //bad luck, undecodable
signature[epos] = 1;
}
if (i == fld.n) return 0;
}
return 1; //no attempts left.
}
int pubkey::verify (const bvector&signature, const bvector&hash, uint delta)
{
if (signature.size() != signature_size() ) return 2;
if (hash.size() != hash_size() ) return 2;
uint i, j;
uint block_size = 1 << T;
bvector synd, b1, b2;
synd.resize (t * qd_sigs.size(), 0);
//compute the syndrome
for (i = 0; i < signature_size(); ++i) {
if (!signature[i]) continue;
//this is actually quite fast, as it happens only several times
for (j = 0; j < qd_sigs.size(); ++j) {
qd_sigs[j].get_block ( (i / block_size) *block_size,
block_size, b1);
permutation::permute_dyadic (i % block_size, b1, b2);
b2.resize (t);
synd.add_offset (b2, t * j);
}
}
std::cout << "SYNDROME: " << synd;
synd.add (hash);
std::cout << "DIFF: " << synd;
if (synd.hamming_weight() > delta) return 1;
return 0;
}

View file

@ -38,7 +38,7 @@ void compute_goppa_error_locator (polynomial&syndrome, gf2m&fld,
v.sqrt (sqInv, fld); //v = sqrt((1/s)+x) mod goppa v.sqrt (sqInv, fld); //v = sqrt((1/s)+x) mod goppa
polynomial a, b; polynomial a, b;
v.ext_euclid (a, b, goppa, fld, goppa.degree()/2); v.ext_euclid (a, b, goppa, fld, goppa.degree() / 2);
a.square (fld); a.square (fld);
b.square (fld); b.square (fld);

View file

@ -26,28 +26,6 @@ using namespace ccr::mce_qd;
#include <set> #include <set>
static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used)
{
uint x;
for (;;) {
x = rng.random (fld.n);
if (used.count (x) ) continue;
used.insert (x);
return x;
}
}
static uint choose_random (uint limit, prng&rng, std::set<uint>used)
{
if (used.size() >= limit - 1) return 0; //die
for (;;) {
uint a = 1 + rng.random (limit - 1);
if (used.count (a) ) continue;
used.insert (a);
return a;
}
}
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint m, uint T, uint block_discard) uint m, uint T, uint block_discard)
{ {
@ -61,6 +39,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
std::vector<uint> support, Hsig; std::vector<uint> support, Hsig;
polynomial g; polynomial g;
uint i, j;
//prepare for data //prepare for data
Hsig.resize (fld.n / 2); Hsig.resize (fld.n / 2);
@ -81,13 +60,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//essence[m-1] is now used as precomputed 1/h_0 //essence[m-1] is now used as precomputed 1/h_0
for (uint s = 0; s < m - 1; ++s) { for (uint s = 0; s < m - 1; ++s) {
uint i = 1 << s; //i = 2^s i = 1 << s; //i = 2^s
Hsig[i] = choose_random (fld.n, rng, used); Hsig[i] = choose_random (fld.n, rng, used);
essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) ); essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) );
used.insert (fld.inv (essence[s]) ); used.insert (fld.inv (essence[s]) );
for (uint j = 1; j < i; ++j) { for (j = 1; j < i; ++j) {
Hsig[i + j] = fld.inv Hsig[i + j] = fld.inv
(fld.add (fld.add
(fld.inv (Hsig[i]), (fld.inv (Hsig[i]),
@ -111,7 +90,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
polynomial tmp; polynomial tmp;
tmp.resize (2, 1); //tmp(x)=x-1 tmp.resize (2, 1); //tmp(x)=x-1
bool consistent = true; bool consistent = true;
for (uint i = 0; i < t; ++i) { for (i = 0; i < t; ++i) {
//tmp(x)=x-z=x-(1/h_i) //tmp(x)=x-z=x-(1/h_i)
tmp[0] = fld.inv (Hsig[i]); tmp[0] = fld.inv (Hsig[i]);
if (used.count (tmp[0]) ) { if (used.count (tmp[0]) ) {
@ -125,7 +104,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
if (!consistent) continue; //retry if (!consistent) continue; //retry
//compute the support, retry if it has two equal elements. //compute the support, retry if it has two equal elements.
for (uint i = 0; i < fld.n / 2; ++i) { for (i = 0; i < fld.n / 2; ++i) {
support[i] = fld.add ( support[i] = fld.add (
fld.inv (Hsig[i]), fld.inv (Hsig[i]),
essence[m - 1]); essence[m - 1]);
@ -154,9 +133,9 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//assemble blocks to bl //assemble blocks to bl
std::vector<polynomial> bl, blp; std::vector<polynomial> bl, blp;
bl.resize (h_block_count); bl.resize (h_block_count);
for (uint i = 0; i < h_block_count; ++i) { for (i = 0; i < h_block_count; ++i) {
bl[i].resize (block_size); bl[i].resize (block_size);
for (uint j = 0; j < block_size; ++j) for (j = 0; j < block_size; ++j)
bl[i][j] = Hsig[i * block_size + j]; bl[i][j] = Hsig[i * block_size + j];
} }
@ -170,7 +149,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//permute individual blocks //permute individual blocks
priv.block_perms.resize (block_count); priv.block_perms.resize (block_count);
bl.resize (blp.size() ); bl.resize (blp.size() );
for (uint i = 0; i < block_count; ++i) { for (i = 0; i < block_count; ++i) {
priv.block_perms[i] = rng.random (block_size); priv.block_perms[i] = rng.random (block_size);
permutation::permute_dyadic (priv.block_perms[i], permutation::permute_dyadic (priv.block_perms[i],
blp[i], bl[i]); blp[i], bl[i]);
@ -186,7 +165,6 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
std::vector<std::vector<bvector> > hblocks; std::vector<std::vector<bvector> > hblocks;
bvector col; bvector col;
uint i, j;
//prepare blocks of h //prepare blocks of h
hblocks.resize (block_count); hblocks.resize (block_count);
@ -206,10 +184,10 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
* If it fails, retry. */ * If it fails, retry. */
if (!qd_to_right_echelon_form (hblocks) ) continue; if (!qd_to_right_echelon_form (hblocks) ) continue;
pub.qd_sigs.resize (block_count - fld.m); pub.qd_sigs.resize2 (block_count - fld.m,
for (uint i = 0; i < block_count - fld.m; ++i) { block_size * fld.m, 0);
pub.qd_sigs[i].resize (block_size * fld.m); for (i = 0; i < block_count - fld.m; ++i) {
for (uint j = 0; j < fld.m; ++j) for (j = 0; j < fld.m; ++j)
pub.qd_sigs[i].set_block pub.qd_sigs[i].set_block
(hblocks[i][j], block_size * j); (hblocks[i][j], block_size * j);
} }
@ -233,6 +211,9 @@ int privkey::prepare()
std::vector<uint> Hsig, support; std::vector<uint> Hsig, support;
uint omega; uint omega;
uint block_size = 1 << T,
block_count = hperm.size();
//compute H signature from essence //compute H signature from essence
Hsig.resize (fld.n / 2); Hsig.resize (fld.n / 2);
Hsig[0] = fld.inv (essence[fld.m - 1]); Hsig[0] = fld.inv (essence[fld.m - 1]);
@ -271,6 +252,8 @@ int privkey::prepare()
//compute the support with omega=0 //compute the support with omega=0
support.resize (fld.n / 2); support.resize (fld.n / 2);
for (i = 0; i < fld.n / 2; ++i) { for (i = 0; i < fld.n / 2; ++i) {
//don't check discarded support
if (block_perm[i / block_size] >= block_count) continue;
support[i] = fld.add support[i] = fld.add
(fld.inv (Hsig[i]), (fld.inv (Hsig[i]),
essence[fld.m - 1]); essence[fld.m - 1]);
@ -305,9 +288,7 @@ int privkey::prepare()
// prepare permuted support, from that prepare permuted check matrix // prepare permuted support, from that prepare permuted check matrix
// (so that it can be applied directly) // (so that it can be applied directly)
uint block_size = 1 << T;
uint pos, blk_perm; uint pos, blk_perm;
uint block_count = hperm.size();
std::vector<uint> sbl1, sbl2, permuted_support; std::vector<uint> sbl1, sbl2, permuted_support;
sbl1.resize (block_size); sbl1.resize (block_size);
@ -365,11 +346,11 @@ int pubkey::encrypt (const bvector & in, bvector & out, prng & rng)
*/ */
//some checks //some checks
if (!qd_sigs.size() ) return 1; if (!qd_sigs.width() ) return 1;
if (qd_sigs[0].size() % t) return 1; if (qd_sigs.height() % t) return 1;
uint blocks = qd_sigs[0].size() / t; uint blocks = qd_sigs.height() / t;
cksum.resize (qd_sigs[0].size(), 0); cksum.resize (qd_sigs.height(), 0);
p.resize (t); p.resize (t);
g.resize (t); g.resize (t);

View file

@ -194,3 +194,15 @@ bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&mat)
return true; return true;
} }
uint choose_random (uint limit, prng&rng, std::set<uint>&used)
{
if (used.size() >= limit - 1) return 0; //die
for (;;) {
uint a = 1 + rng.random (limit - 1);
if (used.count (a) ) continue;
used.insert (a);
return a;
}
}

View file

@ -20,6 +20,7 @@
#define _qdutils_h_ #define _qdutils_h_
#include "codecrypt.h" #include "codecrypt.h"
#include <set>
using namespace ccr; using namespace ccr;
@ -29,5 +30,8 @@ void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&);
//create a generator using fwht //create a generator using fwht
bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&matrix); bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&matrix);
//disjunct random set selector. Doesn't select 0 (thus 0 is returned on failure)
uint choose_random (uint limit, prng&rng, std::set<uint>&used);
#endif #endif

View file

@ -3,6 +3,29 @@
using namespace ccr; using namespace ccr;
static sencode* serialize_uint_vector (std::vector<uint>*v)
{
sencode_list*l = new sencode_list;
l->items.resize (v->size() );
for (uint i = 0; i < v->size(); ++i)
l->items[i] = new sencode_int ( (*v) [i]);
return l;
}
static bool unserialize_uint_vector (std::vector<uint>*v, sencode*s)
{
sencode_list*l = dynamic_cast<sencode_list*> (s);
if (!l) return false;
v->clear();
v->resize (l->items.size() );
for (uint i = 0; i < v->size(); ++i) {
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
if (!x) return false;
(*v) [i] = x->i;
}
return true;
}
sencode* bvector::serialize() sencode* bvector::serialize()
{ {
uint ss = (size() + 7) / 8; uint ss = (size() + 7) / 8;
@ -68,25 +91,16 @@ bool matrix::unserialize (sencode* s)
sencode* permutation::serialize() sencode* permutation::serialize()
{ {
sencode_list*l = new sencode_list; return serialize_uint_vector (this);
l->items.resize (size() );
for (uint i = 0; i < size(); ++i)
l->items[i] = new sencode_int (item (i) );
return l;
} }
bool permutation::unserialize (sencode* s) bool permutation::unserialize (sencode* s)
{ {
sencode_list*l = dynamic_cast<sencode_list*> (s); if (!unserialize_uint_vector (this, s) ) return false;
if (!l) return false;
clear(); //small sanity check
resize (l->items.size() ); for (uint i = 0; i < size(); ++i) if (item (i) >= size() ) return false;
for (uint i = 0; i < size(); ++i) {
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
if (!x) return false;
if (x->i >= size() ) return false; //small sanity check
item (i) = x->i;
}
return true; return true;
} }
@ -104,25 +118,12 @@ bool gf2m::unserialize (sencode* s)
sencode* polynomial::serialize() sencode* polynomial::serialize()
{ {
sencode_list*l = new sencode_list; return serialize_uint_vector (this);
l->items.resize (size() );
for (uint i = 0; i < size(); ++i)
l->items[i] = new sencode_int (item (i) );
return l;
} }
bool polynomial::unserialize (sencode* s) bool polynomial::unserialize (sencode* s)
{ {
sencode_list*l = dynamic_cast<sencode_list*> (s); return unserialize_uint_vector (this, s);
if (!l) return false;
clear();
resize (l->items.size() );
for (uint i = 0; i < size(); ++i) {
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
if (!x) return false;
item (i) = x->i;
}
return true;
} }
sencode* mce::privkey::serialize() sencode* mce::privkey::serialize()
@ -227,22 +228,58 @@ bool nd::pubkey::unserialize (sencode* s)
sencode* mce_qd::privkey::serialize() sencode* mce_qd::privkey::serialize()
{ {
sencode_list*l = new sencode_list;
l->items.resize (6);
l->items[0] = fld.serialize();
l->items[1] = new sencode_int (T);
l->items[2] = serialize_uint_vector (&essence);
l->items[3] = block_perm.serialize();
l->items[4] = serialize_uint_vector (&block_perms);
l->items[5] = hperm.serialize();
return l;
} }
bool mce_qd::privkey::unserialize (sencode* s) bool mce_qd::privkey::unserialize (sencode* s)
{ {
sencode_list*l = dynamic_cast<sencode_list*> (s);
if (!l) return false;
if (l->items.size() != 6) return false;
sencode_int*p = dynamic_cast<sencode_int*> (l->items[1]);
if (!p) return false;
T = p->i;
if (! (fld.unserialize (l->items[0]) &&
unserialize_uint_vector (&essence, l->items[2]) &&
block_perm.unserialize (l->items[3]) &&
unserialize_uint_vector (&block_perms, l->items[4]) &&
hperm.unserialize (l->items[5]) ) ) return false;
return true;
} }
sencode* mce_qd::pubkey::serialize() sencode* mce_qd::pubkey::serialize()
{ {
sencode_list*l = new sencode_list;
l->items.resize (2);
l->items[0] = new sencode_int (T);
l->items[1] = qd_sigs.serialize();
return l;
} }
bool mce_qd::pubkey::unserialize (sencode* s) bool mce_qd::pubkey::unserialize (sencode* s)
{ {
sencode_list*l = dynamic_cast<sencode_list*> (s);
if (!l) return false;
if (l->items.size() != 2) return false;
sencode_int*p = dynamic_cast<sencode_int*> (l->items[0]);
if (!p) return false;
T = p->i;
if (!qd_sigs.unserialize (l->items[1]) ) return false;
return true;
} }
sencode* cfs_qd::privkey::serialize() sencode* cfs_qd::privkey::serialize()