serialization and cfs_qd work
This commit is contained in:
parent
a14d1088e7
commit
fb54056331
|
@ -207,6 +207,11 @@ public:
|
|||
void compute_inversion (permutation&) const;
|
||||
|
||||
void generate_random (uint n, prng&);
|
||||
void generate_identity (uint n) {
|
||||
resize (n);
|
||||
for (uint i = 0; i < n; ++i)
|
||||
item (i) = i;
|
||||
}
|
||||
|
||||
//TODO permute_inv is easy, do it everywhere
|
||||
template<class A, class R> void permute (const A&a, R&r) const {
|
||||
|
@ -425,6 +430,9 @@ public:
|
|||
uint signature_size() {
|
||||
return plain_size();
|
||||
}
|
||||
uint signature_weight() {
|
||||
return plain_weight();
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
bool unserialize (sencode*);
|
||||
|
@ -454,6 +462,9 @@ public:
|
|||
uint signature_size() {
|
||||
return plain_size();
|
||||
}
|
||||
uint signature_weight() {
|
||||
return plain_weight();
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
bool unserialize (sencode*);
|
||||
|
@ -480,14 +491,10 @@ public:
|
|||
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
|
||||
uint T; //the QD's t parameter is 2^T.
|
||||
permutation block_perm; //order of blocks
|
||||
permutation hperm; //block permutation of H block used to get G
|
||||
std::vector<uint> block_perms; //dyadic permutations of blocks
|
||||
permutation hperm; //block permutation of H block used to get G
|
||||
|
||||
//derivable stuff
|
||||
std::vector<uint> Hsig; //signature of canonical H matrix
|
||||
std::vector<uint> support; //computed goppa support
|
||||
uint omega;
|
||||
|
||||
//cols of check matrix of g^2(x)
|
||||
std::vector<polynomial> Hc;
|
||||
//pre-permuted positions of support rows
|
||||
|
@ -497,10 +504,10 @@ public:
|
|||
int prepare();
|
||||
|
||||
uint cipher_size() {
|
||||
return (1 << T) * block_count;
|
||||
return (1 << T) * hperm.size();
|
||||
}
|
||||
uint plain_size() {
|
||||
return (1 << T) * (block_count - fld.m);
|
||||
return (1 << T) * (hperm.size() - fld.m);
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
|
@ -511,7 +518,7 @@ class pubkey
|
|||
{
|
||||
public:
|
||||
uint T;
|
||||
std::vector<bvector> qd_sigs;
|
||||
matrix qd_sigs;
|
||||
|
||||
int encrypt (const bvector&, bvector&, prng&);
|
||||
|
||||
|
@ -521,15 +528,87 @@ public:
|
|||
uint plain_size() {
|
||||
return (1 << T) * qd_sigs.size();
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
bool unserialize (sencode*);
|
||||
};
|
||||
|
||||
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b);
|
||||
}
|
||||
|
||||
/*
|
||||
* QD-CFS
|
||||
*
|
||||
* according to "Quasi-dyadic CFS signatures" by Baretto, Cayrel, Misoczki,
|
||||
* Niebuhr.
|
||||
*
|
||||
* As always with Niederreiter, hash must be of weight t (=1<<T)
|
||||
*/
|
||||
namespace cfs_qd
|
||||
{
|
||||
class privkey
|
||||
{
|
||||
public:
|
||||
std::vector<uint> essence;
|
||||
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
|
||||
uint T, t; //size of blocks is 1<<T, t is error correction capability
|
||||
permutation block_perm; //order of blocks
|
||||
std::vector<uint> block_perms; //dyadic permutations of blocks
|
||||
|
||||
//derivable stuff
|
||||
polynomial g; //goppa
|
||||
std::vector<polynomial> sqInv; //sqroot mod g
|
||||
//pre-permuted positions of support rows
|
||||
std::vector<uint> support_pos;
|
||||
std::vector<polynomial> syndS;
|
||||
|
||||
int sign (const bvector&, bvector&, uint d, uint attempts, prng&);
|
||||
int prepare();
|
||||
|
||||
uint hash_size() {
|
||||
return t * fld.m;
|
||||
}
|
||||
uint signature_size() {
|
||||
return (1 << T) * block_perms.size();
|
||||
}
|
||||
uint signature_weight() {
|
||||
return t;
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
bool unserialize (sencode*);
|
||||
};
|
||||
|
||||
class pubkey
|
||||
{
|
||||
public:
|
||||
uint t, T;
|
||||
//cols of H
|
||||
std::vector<bvector> qd_sigs;
|
||||
|
||||
int verify (const bvector&, const bvector&, uint);
|
||||
|
||||
uint hash_size() {
|
||||
return t * qd_sigs.size();
|
||||
}
|
||||
uint signature_size() {
|
||||
return qd_sigs[0].size();
|
||||
}
|
||||
uint signature_weight() {
|
||||
return t;
|
||||
}
|
||||
|
||||
sencode* serialize();
|
||||
bool unserialize (sencode*);
|
||||
};
|
||||
|
||||
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint t, uint b);
|
||||
}
|
||||
|
||||
/*
|
||||
* McEliece on Overlapping Chain of Goppa Codes
|
||||
*
|
||||
* Similar to Hamdi's Chained BCH Codes, but with improvement.
|
||||
* Similar to Hamdi's Chained BCH Codes, but with improvements.
|
||||
*
|
||||
* This is experimental, unverified, probably insecure, but practical scheme
|
||||
* that achieves good speed, probability and non-exponential key size for full
|
||||
|
|
580
lib/cfs_qd.cpp
Normal file
580
lib/cfs_qd.cpp
Normal file
|
@ -0,0 +1,580 @@
|
|||
|
||||
/*
|
||||
* This file is part of Codecrypt.
|
||||
*
|
||||
* Codecrypt is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or (at
|
||||
* your option) any later version.
|
||||
*
|
||||
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "codecrypt.h"
|
||||
|
||||
using namespace ccr;
|
||||
using namespace ccr::cfs_qd;
|
||||
|
||||
#include "decoding.h"
|
||||
#include "qd_utils.h"
|
||||
|
||||
#include <set>
|
||||
|
||||
int cfs_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||
uint m, uint T, uint t, uint block_discard)
|
||||
{
|
||||
priv.fld.create (m);
|
||||
priv.T = T;
|
||||
uint block_size = 1 << T;
|
||||
if (t > block_size) return 2;
|
||||
priv.t = t;
|
||||
|
||||
//convenience
|
||||
gf2m&fld = priv.fld;
|
||||
std::vector<uint>&essence = priv.essence;
|
||||
|
||||
std::vector<uint> support, Hsig;
|
||||
polynomial g;
|
||||
uint i, j;
|
||||
|
||||
//prepare for data
|
||||
Hsig.resize (fld.n);
|
||||
support.resize (fld.n);
|
||||
essence.resize (m + 1);
|
||||
//note that q=2^m, algo. n=q/2, log n = m-1
|
||||
|
||||
//retry generating until goppa code is produced.
|
||||
for (;;) {
|
||||
|
||||
std::cout << "attempt" << std::endl;
|
||||
|
||||
std::set<uint> used;
|
||||
used.clear();
|
||||
|
||||
//first off, compute the H signature
|
||||
|
||||
Hsig[0] = choose_random (fld.n, rng, used);
|
||||
essence[m] = fld.inv (Hsig[0]);
|
||||
//essence[m] is now used as precomputed 1/h_0
|
||||
|
||||
for (uint s = 0; s < m; ++s) {
|
||||
i = 1 << s; //i = 2^s
|
||||
|
||||
Hsig[i] = choose_random (fld.n, rng, used);
|
||||
essence[s] = fld.add (essence[m], fld.inv (Hsig[i]) );
|
||||
used.insert (fld.inv (essence[s]) );
|
||||
|
||||
for (j = 1; j < i; ++j) {
|
||||
uint hij = fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
fld.add (
|
||||
fld.inv (Hsig[j]),
|
||||
essence[m]
|
||||
) ) );
|
||||
if ( (!Hsig[i]) || (!Hsig[j]) ) hij = 0;
|
||||
Hsig[i + j] = hij;
|
||||
if (hij) {
|
||||
used.insert (Hsig[i + j]);
|
||||
/*used.insert (fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i + j]),
|
||||
essence[m]) ) );*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Gen Hsig: ";
|
||||
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
|
||||
std::cout << std::endl;
|
||||
|
||||
//let's play with blocks.
|
||||
uint block_size = 1 << T,
|
||||
h_block_count = fld.n / block_size,
|
||||
block_count = h_block_count - block_discard;
|
||||
|
||||
//check if we have enough good blocks.
|
||||
std::vector<bool> block_status;
|
||||
uint badblocks;
|
||||
block_status.resize (h_block_count);
|
||||
|
||||
badblocks = 0;
|
||||
for (i = 0; i < h_block_count; ++i) {
|
||||
block_status[i] = true;
|
||||
for (j = 0; j < block_size; ++j)
|
||||
if (!Hsig[i * block_size + j]) {
|
||||
block_status[i] = false;
|
||||
break;
|
||||
}
|
||||
if (!block_status[i]) ++badblocks;
|
||||
}
|
||||
|
||||
std::cout << "badblocks: " << badblocks << std::endl;
|
||||
|
||||
if (badblocks > block_discard) continue; //don't have enough good blocks
|
||||
if (!block_status[0]) continue; //cannot assemble goppa poly
|
||||
|
||||
std::cout << "lol contd." << std::endl;
|
||||
|
||||
//reconstruct g
|
||||
used.clear();
|
||||
g.clear();
|
||||
g.resize (1, 1); //g(x)=1 so we can multiply it
|
||||
polynomial tmp;
|
||||
tmp.resize (2, 1); //tmp(x)=x-1
|
||||
bool consistent = true;
|
||||
for (i = 0; i < t; ++i) {
|
||||
//tmp(x)=x-z=x-(1/h_i) where h_i is squared!
|
||||
tmp[0] = fld.inv (Hsig[i]);
|
||||
if (used.count (tmp[0]) ) {
|
||||
consistent = false;
|
||||
break;
|
||||
}
|
||||
used.insert (tmp[0]);
|
||||
g.mult (tmp, fld);
|
||||
}
|
||||
if (!consistent) continue; //retry
|
||||
|
||||
std::cout << "lol have g: " << g;
|
||||
|
||||
//compute the support, retry if it has two equal elements.
|
||||
for (i = 0; i < fld.n; ++i) {
|
||||
if (!block_status[i / block_size]) continue;
|
||||
support[i] = fld.add (
|
||||
fld.inv (Hsig[i]),
|
||||
essence[m]);
|
||||
|
||||
std::cout << "support " << i << " = " << support[i] << std::endl;
|
||||
if (used.count (support[i]) ) {
|
||||
std::cout << "support inconsistent at " << i << std::endl;
|
||||
++badblocks;
|
||||
block_status[i / block_size] = false;
|
||||
break;
|
||||
}
|
||||
|
||||
used.insert (support[i]);
|
||||
}
|
||||
|
||||
std::cout << "bad: " << badblocks << std::endl;
|
||||
if (badblocks > block_discard) continue;
|
||||
|
||||
//assemble blocks to bl
|
||||
std::vector<polynomial> bl, blp;
|
||||
bl.resize (h_block_count);
|
||||
for (i = 0; i < h_block_count; ++i) {
|
||||
bl[i].resize (block_size);
|
||||
for (j = 0; j < block_size; ++j)
|
||||
bl[i][j] = Hsig[i * block_size + j];
|
||||
}
|
||||
|
||||
//permute the blocks. first move the damaged to discard area
|
||||
priv.block_perm.generate_identity (h_block_count);
|
||||
uint oks = h_block_count;
|
||||
for (i = 0; i < oks; ++i)
|
||||
if (!block_status[i]) {
|
||||
std::cout << "removing one" << std::endl;
|
||||
--oks;
|
||||
priv.block_perm[i] = oks;
|
||||
priv.block_perm[oks] = i;
|
||||
//swap block statuses as well
|
||||
bool tmp = block_status[i];
|
||||
block_status[i] = block_status[oks];
|
||||
block_status[oks] = tmp;
|
||||
--i;
|
||||
}
|
||||
std::cout << "BLOCK " << priv.block_perm;
|
||||
permutation rest_perm;
|
||||
rest_perm.generate_random (oks, rng);
|
||||
//permute the undamaged part of block_perm by hand TODO FIXME
|
||||
//for (i = 0; i < oks; ++i) rest_perm[i] = priv.block_perm[rest_perm[i]];
|
||||
//for (i = 0; i < oks; ++i) priv.block_perm[i] = rest_perm[i];
|
||||
|
||||
//now we can safely permute and discard blocks
|
||||
priv.block_perm.permute (bl, blp);
|
||||
blp.resize (block_count);
|
||||
|
||||
//permute individual blocks
|
||||
priv.block_perms.resize (block_count);
|
||||
bl.resize (blp.size() );
|
||||
for (i = 0; i < block_count; ++i) {
|
||||
priv.block_perms[i] = rng.random (block_size);
|
||||
permutation::permute_dyadic (priv.block_perms[i],
|
||||
blp[i], bl[i]);
|
||||
}
|
||||
|
||||
//construct H
|
||||
pub.qd_sigs.resize (fld.m);
|
||||
bvector col;
|
||||
bvector block;
|
||||
for (i = 0; i < fld.m; ++i)
|
||||
pub.qd_sigs[i].resize (block_count * block_size);
|
||||
for (i = 0; i < block_count; ++i) {
|
||||
col.from_poly_cotrace (bl[i], fld);
|
||||
for (j = 0; j < fld.m; ++j) {
|
||||
col.get_block (j * block_size,
|
||||
block_size, block);
|
||||
|
||||
pub.qd_sigs[j].set_block
|
||||
(block, block_size * i);
|
||||
}
|
||||
}
|
||||
|
||||
//finish the pubkey
|
||||
pub.T = T;
|
||||
pub.t = t;
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int privkey::prepare()
|
||||
{
|
||||
uint s, i, j, k;
|
||||
std::vector<uint> Hsig, support;
|
||||
uint omega;
|
||||
|
||||
uint block_count = block_perms.size(),
|
||||
block_size = 1 << T;
|
||||
|
||||
//compute H signature from essence
|
||||
Hsig.resize (fld.n);
|
||||
Hsig[0] = fld.inv (essence[fld.m]);
|
||||
for (s = 0; s < fld.m; ++s) {
|
||||
i = 1 << s; //i = 2^s
|
||||
|
||||
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m]) );
|
||||
|
||||
for (j = 1; j < i; ++j)
|
||||
Hsig[i + j] = fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
fld.add (
|
||||
fld.inv (Hsig[j]),
|
||||
essence[fld.m]
|
||||
) ) );
|
||||
}
|
||||
std::cout << "Gen Hsig: ";
|
||||
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
//goppa polynomial with omega=0
|
||||
std::set<uint> used;
|
||||
used.clear();
|
||||
|
||||
polynomial tmp;
|
||||
g.clear();
|
||||
g.resize (1, 1); //g(x)=1
|
||||
tmp.clear();
|
||||
tmp.resize (2, 1); //tmp(x)=x+1
|
||||
for (i = 0; i < t; ++i) {
|
||||
tmp[0] = fld.inv (Hsig[i]); //tmp(x)=x+1/h_i
|
||||
if (used.count (tmp[0]) )
|
||||
return 1;
|
||||
std::cout << tmp[0] << std::endl;
|
||||
used.insert (tmp[0]);
|
||||
g.mult (tmp, fld);
|
||||
}
|
||||
|
||||
std::cout << "HERE 1" << std::endl;
|
||||
//compute the support with omega=0
|
||||
support.resize (fld.n);
|
||||
for (i = 0; i < fld.n; ++i) {
|
||||
//don't compute with discarded support
|
||||
if (block_perm[i / block_size] >= block_count) continue;
|
||||
support[i] = fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
essence[fld.m]);
|
||||
std::cout << "support " << i << " = " << support[i] << std::endl;
|
||||
if (used.count (support[i]) ) //invalid support
|
||||
return 1;
|
||||
used.insert (support[i]);
|
||||
}
|
||||
|
||||
std::cout << "HERE LOLOLOLOLOL" << std::endl;
|
||||
//choose omega
|
||||
omega = fld.n;
|
||||
for (i = 0; i < fld.n; ++i)
|
||||
if (!used.count (i) ) {
|
||||
omega = i;
|
||||
break;
|
||||
}
|
||||
if (omega == fld.n) return 1;
|
||||
|
||||
//modify support to omega-ized version
|
||||
for (i = 0; i < support.size(); ++i)
|
||||
support[i] = fld.add (support[i], omega);
|
||||
|
||||
//modify g to omega-ized version
|
||||
g.clear();
|
||||
tmp.clear();
|
||||
g.resize (1, 1); //g(x)=1
|
||||
tmp.resize (2, 1); //tmp(x)=x+1
|
||||
for (i = 0; i < t; ++i) {
|
||||
tmp[0] = fld.add (fld.inv (Hsig[i]), omega);
|
||||
g.mult (tmp, fld);
|
||||
}
|
||||
|
||||
g.compute_square_root_matrix (sqInv, fld);
|
||||
|
||||
// prepare permuted support, from that prepare permuted check matrix
|
||||
// (so that it can be applied directly)
|
||||
uint pos;
|
||||
std::vector<uint> sbl1, sbl2, permuted_support;
|
||||
|
||||
sbl1.resize (block_size);
|
||||
sbl2.resize (block_size);
|
||||
permuted_support.resize (block_size * block_count);
|
||||
|
||||
//permute support
|
||||
for (i = 0; i < fld.n / block_size; ++i) {
|
||||
pos = block_perm[i];
|
||||
if (pos >= block_count) continue; //was discarded
|
||||
|
||||
//permute i-th block of support
|
||||
for (j = 0; j < block_size; ++j)
|
||||
sbl1[j] = support[j + i * block_size];
|
||||
|
||||
permutation::permute_dyadic (block_perms[pos], sbl1, sbl2);
|
||||
|
||||
//store support to permuted support
|
||||
for (j = 0; j < block_size; ++j)
|
||||
permuted_support[j + pos * block_size] = sbl2[j];
|
||||
}
|
||||
|
||||
//convert the permuted support to actual lookup
|
||||
support_pos.clear();
|
||||
//fld.n in support lookup means that it isn't there (we don't have -1)
|
||||
support_pos.resize (fld.n, fld.n);
|
||||
for (i = 0; i < block_size * block_count; ++i)
|
||||
support_pos[permuted_support[i]] = i;
|
||||
|
||||
/*
|
||||
* TODO move this to separate function
|
||||
*
|
||||
* prepare the matrix to compute decodable syndrome from QD matrix. From Barreto's slides:
|
||||
*
|
||||
* A is public check matrix
|
||||
* H is private check matrix producing decodable syndromes
|
||||
*
|
||||
* H=SA for some S
|
||||
* therefore if
|
||||
*
|
||||
* synd = A * codeword
|
||||
*
|
||||
* then
|
||||
*
|
||||
* S*synd = H*codeword
|
||||
*
|
||||
* and S = H * A^T * (A * A^T)^-1
|
||||
*/
|
||||
|
||||
std::vector<std::vector<uint> > ma, mb, tmpa, tmph;
|
||||
std::vector<uint> t1, t2;
|
||||
|
||||
/*
|
||||
* First, precompute the matrices A and H
|
||||
*/
|
||||
|
||||
tmpa.resize (t);
|
||||
tmph.resize (t);
|
||||
for (i = 0; i < t; ++i) {
|
||||
tmpa[i].resize (fld.n);
|
||||
tmph[i].resize (fld.n);
|
||||
}
|
||||
|
||||
for (i = 0; i < t; ++i)
|
||||
permutation::permute_dyadic (i, Hsig, tmpa[i]);
|
||||
|
||||
std::cout << "TMPA" << std::endl;
|
||||
for (i = 0; i < t; ++i) {
|
||||
for (j = 0; j < fld.n; ++j) std::cout << tmpa[i][j] << ' ';
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
polynomial tmpcol;
|
||||
for (i = 0; i < fld.n; ++i) {
|
||||
tmpcol.resize (2);
|
||||
tmpcol[0] = support[i];
|
||||
tmpcol[1] = 1;
|
||||
tmpcol.inv (g, fld);
|
||||
tmpcol.resize (t, 0);
|
||||
for (j = 0; j < t; ++j) tmph[j][i] = tmpcol[j];
|
||||
}
|
||||
|
||||
/*
|
||||
* compute H * H^T to ma and A * H^T to mb.
|
||||
*/
|
||||
|
||||
ma.resize (t);
|
||||
mb.resize (t);
|
||||
for (i = 0; i < t; ++i) {
|
||||
ma[i].resize (t, 0);
|
||||
mb[i].resize (t, 0);
|
||||
}
|
||||
|
||||
for (i = 0; i < t; ++i) for (j = 0; j < t; ++j) {
|
||||
for (k = 0; k < fld.n; ++k) {
|
||||
ma[i][j] = fld.add (ma[i][j], fld.mult (tmph[i][k], tmph[j][k]) );
|
||||
mb[i][j] = fld.add (mb[i][j], fld.mult (tmpa[i][k], tmph[j][k]) );
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "MA" << std::endl;
|
||||
for (i = 0; i < t; ++i) {
|
||||
for (j = 0; j < t; ++j) std::cout << ma[i][j] << ' ';
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "MB" << std::endl;
|
||||
for (i = 0; i < t; ++i) {
|
||||
for (j = 0; j < t; ++j) std::cout << mb[i][j] << ' ';
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
* now invert mb into ma as (mb|ma) to (I|ma*mb^-1)
|
||||
*
|
||||
* (result will be transposed, but that's actually good for our purpose)
|
||||
*/
|
||||
|
||||
uint x;
|
||||
//gauss step
|
||||
for (i = 0; i < t; ++i) {
|
||||
//find pivot
|
||||
for (j = i; j < t; ++j) if (mb[j][i] != 0) break;
|
||||
if (j >= t) return 1; //no pivot -> not invertible
|
||||
if (j > i) {
|
||||
ma[j].swap (ma[i]);
|
||||
mb[j].swap (mb[i]);
|
||||
}
|
||||
//normalize
|
||||
x = fld.inv (mb[i][i]);
|
||||
for (j = 0; j < t; ++j) {
|
||||
ma[i][j] = fld.mult (ma[i][j], x);
|
||||
mb[i][j] = fld.mult (mb[i][j], x);
|
||||
}
|
||||
//zero rows below
|
||||
for (j = i + 1; j < t; ++j) {
|
||||
x = mb[j][i];
|
||||
if (x == 0) continue;
|
||||
for (k = 0; k < t; ++k) {
|
||||
ma[j][k] = fld.add (ma[j][k], fld.mult (x, ma[i][k]) );
|
||||
mb[j][k] = fld.add (mb[j][k], fld.mult (x, mb[i][k]) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//jordan step
|
||||
std::cout << "jordan step..." << std::endl;
|
||||
for (i = 0; i < t; ++i) {
|
||||
for (j = i + 1; j < t; ++j) {
|
||||
x = mb[t - j - 1][t - i - 1];
|
||||
if (x == 0) continue;
|
||||
for (k = 0; k < t; ++k) {
|
||||
ma[t - j - 1][k] = fld.add (ma[t - j - 1][k], fld.mult (x, ma[t - i - 1][k]) );
|
||||
mb[t - j - 1][k] = fld.add (mb[t - j - 1][k], fld.mult (x, mb[t - i - 1][k]) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//result is now transposed in ma.
|
||||
syndS.resize (t);
|
||||
for (i = 0; i < t; ++i) {
|
||||
syndS[i].resize (t);
|
||||
for (j = 0; j < t; ++j) syndS[i][j] = ma[i][j];
|
||||
}
|
||||
|
||||
std::cout << "SyndS is OKAY!" << std::endl;
|
||||
|
||||
polynomial decsynd, loc;
|
||||
for (i = 0; i < t; ++i)
|
||||
decsynd.add_mult (syndS[i], Hsig[i], fld);
|
||||
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
|
||||
std::cout << "TEST LOCATOR: " << loc;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int privkey::sign (const bvector& hash, bvector&signature,
|
||||
uint delta, uint attempts, prng&rng)
|
||||
{
|
||||
if (hash.size() != hash_size() ) return 2;
|
||||
|
||||
polynomial synd, decsynd, tmp, loc;
|
||||
bvector ev, h2;
|
||||
|
||||
uint i;
|
||||
|
||||
for (uint att = 0; att < attempts; ++att) {
|
||||
h2 = hash;
|
||||
for (i = 0; i < delta; ++i) {
|
||||
uint p = rng.random (h2.size() );
|
||||
h2[p] = !h2[p];
|
||||
}
|
||||
|
||||
h2.to_poly_cotrace (synd, fld);
|
||||
|
||||
std::cout << "SYND" << synd;
|
||||
|
||||
decsynd.clear();
|
||||
for (i = 0; i < t; ++i)
|
||||
decsynd.add_mult (syndS[i], synd[i], fld);
|
||||
|
||||
std::cout << "SYND PREP" << decsynd;
|
||||
|
||||
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
|
||||
if (!evaluate_error_locator_trace (loc, ev, fld) ) continue;
|
||||
//we might have it!
|
||||
std::cout << ev;
|
||||
signature.clear();
|
||||
signature.resize (signature_size(), 0);
|
||||
|
||||
for (i = 0; i < fld.n; ++i) if (ev[i]) {
|
||||
uint epos = support_pos[i];
|
||||
if (epos == fld.n) break; //bad luck, undecodable
|
||||
signature[epos] = 1;
|
||||
}
|
||||
if (i == fld.n) return 0;
|
||||
}
|
||||
return 1; //no attempts left.
|
||||
}
|
||||
|
||||
int pubkey::verify (const bvector&signature, const bvector&hash, uint delta)
|
||||
{
|
||||
if (signature.size() != signature_size() ) return 2;
|
||||
if (hash.size() != hash_size() ) return 2;
|
||||
|
||||
uint i, j;
|
||||
uint block_size = 1 << T;
|
||||
bvector synd, b1, b2;
|
||||
|
||||
synd.resize (t * qd_sigs.size(), 0);
|
||||
//compute the syndrome
|
||||
for (i = 0; i < signature_size(); ++i) {
|
||||
if (!signature[i]) continue;
|
||||
|
||||
//this is actually quite fast, as it happens only several times
|
||||
for (j = 0; j < qd_sigs.size(); ++j) {
|
||||
qd_sigs[j].get_block ( (i / block_size) *block_size,
|
||||
block_size, b1);
|
||||
permutation::permute_dyadic (i % block_size, b1, b2);
|
||||
b2.resize (t);
|
||||
synd.add_offset (b2, t * j);
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "SYNDROME: " << synd;
|
||||
synd.add (hash);
|
||||
std::cout << "DIFF: " << synd;
|
||||
if (synd.hamming_weight() > delta) return 1;
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -26,28 +26,6 @@ using namespace ccr::mce_qd;
|
|||
|
||||
#include <set>
|
||||
|
||||
static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used)
|
||||
{
|
||||
uint x;
|
||||
for (;;) {
|
||||
x = rng.random (fld.n);
|
||||
if (used.count (x) ) continue;
|
||||
used.insert (x);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
static uint choose_random (uint limit, prng&rng, std::set<uint>used)
|
||||
{
|
||||
if (used.size() >= limit - 1) return 0; //die
|
||||
for (;;) {
|
||||
uint a = 1 + rng.random (limit - 1);
|
||||
if (used.count (a) ) continue;
|
||||
used.insert (a);
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||
uint m, uint T, uint block_discard)
|
||||
{
|
||||
|
@ -61,6 +39,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
|
||||
std::vector<uint> support, Hsig;
|
||||
polynomial g;
|
||||
uint i, j;
|
||||
|
||||
//prepare for data
|
||||
Hsig.resize (fld.n / 2);
|
||||
|
@ -81,13 +60,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
//essence[m-1] is now used as precomputed 1/h_0
|
||||
|
||||
for (uint s = 0; s < m - 1; ++s) {
|
||||
uint i = 1 << s; //i = 2^s
|
||||
i = 1 << s; //i = 2^s
|
||||
|
||||
Hsig[i] = choose_random (fld.n, rng, used);
|
||||
essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) );
|
||||
used.insert (fld.inv (essence[s]) );
|
||||
|
||||
for (uint j = 1; j < i; ++j) {
|
||||
for (j = 1; j < i; ++j) {
|
||||
Hsig[i + j] = fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
|
@ -111,7 +90,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
polynomial tmp;
|
||||
tmp.resize (2, 1); //tmp(x)=x-1
|
||||
bool consistent = true;
|
||||
for (uint i = 0; i < t; ++i) {
|
||||
for (i = 0; i < t; ++i) {
|
||||
//tmp(x)=x-z=x-(1/h_i)
|
||||
tmp[0] = fld.inv (Hsig[i]);
|
||||
if (used.count (tmp[0]) ) {
|
||||
|
@ -125,7 +104,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
if (!consistent) continue; //retry
|
||||
|
||||
//compute the support, retry if it has two equal elements.
|
||||
for (uint i = 0; i < fld.n / 2; ++i) {
|
||||
for (i = 0; i < fld.n / 2; ++i) {
|
||||
support[i] = fld.add (
|
||||
fld.inv (Hsig[i]),
|
||||
essence[m - 1]);
|
||||
|
@ -154,9 +133,9 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
//assemble blocks to bl
|
||||
std::vector<polynomial> bl, blp;
|
||||
bl.resize (h_block_count);
|
||||
for (uint i = 0; i < h_block_count; ++i) {
|
||||
for (i = 0; i < h_block_count; ++i) {
|
||||
bl[i].resize (block_size);
|
||||
for (uint j = 0; j < block_size; ++j)
|
||||
for (j = 0; j < block_size; ++j)
|
||||
bl[i][j] = Hsig[i * block_size + j];
|
||||
}
|
||||
|
||||
|
@ -170,7 +149,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
//permute individual blocks
|
||||
priv.block_perms.resize (block_count);
|
||||
bl.resize (blp.size() );
|
||||
for (uint i = 0; i < block_count; ++i) {
|
||||
for (i = 0; i < block_count; ++i) {
|
||||
priv.block_perms[i] = rng.random (block_size);
|
||||
permutation::permute_dyadic (priv.block_perms[i],
|
||||
blp[i], bl[i]);
|
||||
|
@ -186,7 +165,6 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
|
||||
std::vector<std::vector<bvector> > hblocks;
|
||||
bvector col;
|
||||
uint i, j;
|
||||
|
||||
//prepare blocks of h
|
||||
hblocks.resize (block_count);
|
||||
|
@ -206,10 +184,10 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
* If it fails, retry. */
|
||||
if (!qd_to_right_echelon_form (hblocks) ) continue;
|
||||
|
||||
pub.qd_sigs.resize (block_count - fld.m);
|
||||
for (uint i = 0; i < block_count - fld.m; ++i) {
|
||||
pub.qd_sigs[i].resize (block_size * fld.m);
|
||||
for (uint j = 0; j < fld.m; ++j)
|
||||
pub.qd_sigs.resize2 (block_count - fld.m,
|
||||
block_size * fld.m, 0);
|
||||
for (i = 0; i < block_count - fld.m; ++i) {
|
||||
for (j = 0; j < fld.m; ++j)
|
||||
pub.qd_sigs[i].set_block
|
||||
(hblocks[i][j], block_size * j);
|
||||
}
|
||||
|
@ -233,6 +211,9 @@ int privkey::prepare()
|
|||
std::vector<uint> Hsig, support;
|
||||
uint omega;
|
||||
|
||||
uint block_size = 1 << T,
|
||||
block_count = hperm.size();
|
||||
|
||||
//compute H signature from essence
|
||||
Hsig.resize (fld.n / 2);
|
||||
Hsig[0] = fld.inv (essence[fld.m - 1]);
|
||||
|
@ -271,6 +252,8 @@ int privkey::prepare()
|
|||
//compute the support with omega=0
|
||||
support.resize (fld.n / 2);
|
||||
for (i = 0; i < fld.n / 2; ++i) {
|
||||
//don't check discarded support
|
||||
if (block_perm[i / block_size] >= block_count) continue;
|
||||
support[i] = fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
essence[fld.m - 1]);
|
||||
|
@ -305,9 +288,7 @@ int privkey::prepare()
|
|||
|
||||
// prepare permuted support, from that prepare permuted check matrix
|
||||
// (so that it can be applied directly)
|
||||
uint block_size = 1 << T;
|
||||
uint pos, blk_perm;
|
||||
uint block_count = hperm.size();
|
||||
std::vector<uint> sbl1, sbl2, permuted_support;
|
||||
|
||||
sbl1.resize (block_size);
|
||||
|
@ -365,11 +346,11 @@ int pubkey::encrypt (const bvector & in, bvector & out, prng & rng)
|
|||
*/
|
||||
|
||||
//some checks
|
||||
if (!qd_sigs.size() ) return 1;
|
||||
if (qd_sigs[0].size() % t) return 1;
|
||||
if (!qd_sigs.width() ) return 1;
|
||||
if (qd_sigs.height() % t) return 1;
|
||||
|
||||
uint blocks = qd_sigs[0].size() / t;
|
||||
cksum.resize (qd_sigs[0].size(), 0);
|
||||
uint blocks = qd_sigs.height() / t;
|
||||
cksum.resize (qd_sigs.height(), 0);
|
||||
|
||||
p.resize (t);
|
||||
g.resize (t);
|
||||
|
|
|
@ -194,3 +194,15 @@ bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&mat)
|
|||
|
||||
return true;
|
||||
}
|
||||
|
||||
uint choose_random (uint limit, prng&rng, std::set<uint>&used)
|
||||
{
|
||||
if (used.size() >= limit - 1) return 0; //die
|
||||
for (;;) {
|
||||
uint a = 1 + rng.random (limit - 1);
|
||||
if (used.count (a) ) continue;
|
||||
used.insert (a);
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#define _qdutils_h_
|
||||
|
||||
#include "codecrypt.h"
|
||||
#include <set>
|
||||
|
||||
using namespace ccr;
|
||||
|
||||
|
@ -29,5 +30,8 @@ void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&);
|
|||
//create a generator using fwht
|
||||
bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&matrix);
|
||||
|
||||
//disjunct random set selector. Doesn't select 0 (thus 0 is returned on failure)
|
||||
uint choose_random (uint limit, prng&rng, std::set<uint>&used);
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -3,6 +3,29 @@
|
|||
|
||||
using namespace ccr;
|
||||
|
||||
static sencode* serialize_uint_vector (std::vector<uint>*v)
|
||||
{
|
||||
sencode_list*l = new sencode_list;
|
||||
l->items.resize (v->size() );
|
||||
for (uint i = 0; i < v->size(); ++i)
|
||||
l->items[i] = new sencode_int ( (*v) [i]);
|
||||
return l;
|
||||
}
|
||||
|
||||
static bool unserialize_uint_vector (std::vector<uint>*v, sencode*s)
|
||||
{
|
||||
sencode_list*l = dynamic_cast<sencode_list*> (s);
|
||||
if (!l) return false;
|
||||
v->clear();
|
||||
v->resize (l->items.size() );
|
||||
for (uint i = 0; i < v->size(); ++i) {
|
||||
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
|
||||
if (!x) return false;
|
||||
(*v) [i] = x->i;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
sencode* bvector::serialize()
|
||||
{
|
||||
uint ss = (size() + 7) / 8;
|
||||
|
@ -68,25 +91,16 @@ bool matrix::unserialize (sencode* s)
|
|||
|
||||
sencode* permutation::serialize()
|
||||
{
|
||||
sencode_list*l = new sencode_list;
|
||||
l->items.resize (size() );
|
||||
for (uint i = 0; i < size(); ++i)
|
||||
l->items[i] = new sencode_int (item (i) );
|
||||
return l;
|
||||
return serialize_uint_vector (this);
|
||||
}
|
||||
|
||||
bool permutation::unserialize (sencode* s)
|
||||
{
|
||||
sencode_list*l = dynamic_cast<sencode_list*> (s);
|
||||
if (!l) return false;
|
||||
clear();
|
||||
resize (l->items.size() );
|
||||
for (uint i = 0; i < size(); ++i) {
|
||||
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
|
||||
if (!x) return false;
|
||||
if (x->i >= size() ) return false; //small sanity check
|
||||
item (i) = x->i;
|
||||
}
|
||||
if (!unserialize_uint_vector (this, s) ) return false;
|
||||
|
||||
//small sanity check
|
||||
for (uint i = 0; i < size(); ++i) if (item (i) >= size() ) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -104,25 +118,12 @@ bool gf2m::unserialize (sencode* s)
|
|||
|
||||
sencode* polynomial::serialize()
|
||||
{
|
||||
sencode_list*l = new sencode_list;
|
||||
l->items.resize (size() );
|
||||
for (uint i = 0; i < size(); ++i)
|
||||
l->items[i] = new sencode_int (item (i) );
|
||||
return l;
|
||||
return serialize_uint_vector (this);
|
||||
}
|
||||
|
||||
bool polynomial::unserialize (sencode* s)
|
||||
{
|
||||
sencode_list*l = dynamic_cast<sencode_list*> (s);
|
||||
if (!l) return false;
|
||||
clear();
|
||||
resize (l->items.size() );
|
||||
for (uint i = 0; i < size(); ++i) {
|
||||
sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]);
|
||||
if (!x) return false;
|
||||
item (i) = x->i;
|
||||
}
|
||||
return true;
|
||||
return unserialize_uint_vector (this, s);
|
||||
}
|
||||
|
||||
sencode* mce::privkey::serialize()
|
||||
|
@ -227,22 +228,58 @@ bool nd::pubkey::unserialize (sencode* s)
|
|||
|
||||
sencode* mce_qd::privkey::serialize()
|
||||
{
|
||||
|
||||
sencode_list*l = new sencode_list;
|
||||
l->items.resize (6);
|
||||
l->items[0] = fld.serialize();
|
||||
l->items[1] = new sencode_int (T);
|
||||
l->items[2] = serialize_uint_vector (&essence);
|
||||
l->items[3] = block_perm.serialize();
|
||||
l->items[4] = serialize_uint_vector (&block_perms);
|
||||
l->items[5] = hperm.serialize();
|
||||
return l;
|
||||
}
|
||||
|
||||
bool mce_qd::privkey::unserialize (sencode* s)
|
||||
{
|
||||
sencode_list*l = dynamic_cast<sencode_list*> (s);
|
||||
if (!l) return false;
|
||||
if (l->items.size() != 6) return false;
|
||||
|
||||
sencode_int*p = dynamic_cast<sencode_int*> (l->items[1]);
|
||||
if (!p) return false;
|
||||
T = p->i;
|
||||
|
||||
if (! (fld.unserialize (l->items[0]) &&
|
||||
unserialize_uint_vector (&essence, l->items[2]) &&
|
||||
block_perm.unserialize (l->items[3]) &&
|
||||
unserialize_uint_vector (&block_perms, l->items[4]) &&
|
||||
hperm.unserialize (l->items[5]) ) ) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
sencode* mce_qd::pubkey::serialize()
|
||||
{
|
||||
|
||||
sencode_list*l = new sencode_list;
|
||||
l->items.resize (2);
|
||||
l->items[0] = new sencode_int (T);
|
||||
l->items[1] = qd_sigs.serialize();
|
||||
return l;
|
||||
}
|
||||
|
||||
bool mce_qd::pubkey::unserialize (sencode* s)
|
||||
{
|
||||
sencode_list*l = dynamic_cast<sencode_list*> (s);
|
||||
if (!l) return false;
|
||||
if (l->items.size() != 2) return false;
|
||||
|
||||
sencode_int*p = dynamic_cast<sencode_int*> (l->items[0]);
|
||||
if (!p) return false;
|
||||
T = p->i;
|
||||
|
||||
if (!qd_sigs.unserialize (l->items[1]) ) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
sencode* cfs_qd::privkey::serialize()
|
||||
|
|
Loading…
Reference in a new issue