codecrypt/lib/mce_qd.cpp

165 lines
3.5 KiB
C++

#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_qd;
#include "decoding.h"
#include <set>
static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used)
{
uint x;
for (;;) {
x = rng.random (fld.n);
if (used.count (x) ) continue;
used.insert (x);
return x;
}
}
static uint choose_random (uint limit, prng&rng, std::set<uint>used)
{
if (used.size() >= limit - 1) return 0; //die
for (;;) {
uint a = 1 + rng.random (limit - 1);
if (used.count (a) ) continue;
used.insert (a);
return a;
}
}
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint m, uint T, uint block_count)
{
priv.fld.create (m);
priv.T = T;
uint t = 1 << T;
//convenience
gf2m&fld = priv.fld;
std::vector<uint>&Hsig = priv.Hsig;
std::vector<uint>&essence = priv.essence;
std::vector<uint>&support = priv.support;
polynomial&g = priv.g;
//prepare for data
Hsig.resize (fld.n / 2);
support.resize (fld.n / 2);
essence.resize (m);
//note that q=2^m, algo. n=q/2, log n = m-1
//retry generating until goppa code is produced.
for (;;) {
std::set<uint> used;
used.clear();
//first off, compute the H signature
Hsig[0] = choose_random (fld.n, rng, used);
essence[m-1] = fld.inv (Hsig[0]);
//essence[m-1] is now used as precomputed 1/h_0
for (uint s = 0; s < m - 1; ++s) {
uint i = 1 << s; //i = 2^s
Hsig[i] = choose_random (fld.n, rng, used);
essence[s] = fld.add (essence[m-1], fld.inv (Hsig[i]) );
used.insert (fld.inv (essence[s]) );
for (uint j = 1; j < i; ++j) {
Hsig[i+j] = fld.inv (
fld.add (
fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[m-1]
) ) );
used.insert (Hsig[i+j]);
used.insert (fld.inv (
fld.add (
fld.inv (Hsig[i+j]),
essence[m-1]) ) );
}
}
//from now on, we fix 'omega' from the paper to zero.
//compute the support, retry if it has two equal elements.
used.clear();
bool consistent = true;
used.insert (0); //zero is forbidden
for (uint i = 0; i < fld.n / 2; ++i) {
support[i] = fld.add (
fld.inv (Hsig[i]),
essence[m-1]);
if (used.count (support[i]) ) {
consistent = false;
break;
}
used.insert (support[i]);
}
if (!consistent) continue; //retry
//assemble goppa polynomial.
g.clear();
g.resize (1, 1); //g(x)=1 so we can multiply it
polynomial tmp;
tmp.resize (2, 1); //tmp(x)=x-1
for (uint i = 0; i < t; ++i) {
//tmp(x)=x-z=x-(1/h_i)
tmp[0] = fld.inv (Hsig[i]);
g.mult (tmp, fld);
}
//now the blocks.
uint block_size = 1 << T,
h_block_count = (fld.n / 2) / block_size;
//assemble blocks to bl
std::vector<std::vector<uint> > bl, blp;
bl.resize (block_size);
for (uint i = 0; i < h_block_count; ++i)
bl[i] = std::vector<uint>
(Hsig.begin() + i * block_size,
Hsig.begin() + (i + 1) * block_size);
//permute them
permutation bp;
bp.generate_random (h_block_count, rng);
bp.permute (bl, blp);
//discard blocks
blp.resize (block_count);
//TODO permute individual blocks
//TODO co-trace to binary H^
//TODO systematic H
//TODO systematic G
//TODO signature of G
return 0;
}
}
int privkey::prepare()
{
return 0;
}
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
{
return 0;
}
int privkey::decrypt (const bvector&in, bvector&out)
{
return 0;
}