summaryrefslogtreecommitdiff
path: root/app/Interpreter.hs
blob: 2ad0118ced285fd81c25e2f63f5a603ae5348149 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
{-# LANGUAGE RankNTypes #-}

module Interpreter where

{- pražský přehledný stroj -}
import Code
  ( Builtin(..)
  , Cho(..)
  , Code
  , Datum(..)
  , Instr(..)
  , InterpFn
  , emptyHeap
  , emptyScope
  )
import CodeLens
import Control.Monad (when)
import qualified Data.Map as M
import Env (PrlgEnv)
import Heap
import IR (Id(..), StrTable(..))
import Lens.Micro
import Lens.Micro.Mtl

prove :: Code -> PrlgEnv (Either String Bool)
prove g = do
  cur .=
    Cho
      { _hed = g
      , _hvar = emptyScope
      , _gol = [Done]
      , _gvar = emptyScope
      , _unis = 0
      , _retcut = True
      , _heap = emptyHeap
      , _stk = []
      , _cut = []
      , _hcut = []
      }
  cho .= []
  loop
  where
    loop = do
      x <- proveStep
      case x of
        Nothing -> loop -- not finished yet
        Just x -> return x

{- toplevel decision -}
proveStep :: InterpFn
proveStep = do
  u <- use (cur . unis)
  h <- use (cur . hed)
  {- tracing:
  import Control.Monad.Trans.Class (lift)
  import System.Console.Haskeline
  g <- use (cur . gol)
  cho <- use cho
  cut <- use (cur . cut)
  lift $ do
    outputStrLn $ "STEP (unis="++show u++")"
    outputStrLn $ "head = "++ show h
    outputStrLn $ "goal = "++ show g
    outputStrLn $ "cut = " ++ show cut
    outputStrLn $ "cho = " ++ show cho
  -}
  case (u, h) of
    (0, []) -> goalStep
    (0, _) -> headStep h
    (_, _)
      | u > 0 -> unifyStep h
    _ -> err "invalid interpreter state"

continue :: InterpFn
continue = pure Nothing

finish :: Bool -> InterpFn
finish = pure . Just . Right

err :: String -> InterpFn
err = return . Just . Left

{- toplevel choices -}
goalStep :: InterpFn
goalStep = do
  g <- use (cur . gol)
  case g of
    U (Struct s):gs -> openGoal s
    [Done] -> succeedGoal
    Cut:gs -> cutGoal
    Choices cs:gs -> pushChoices cs
    _ -> err "invalid goal code"

headStep :: [Instr] -> InterpFn
headStep h = do
  g <- use (cur . gol)
  case (h, g) of
    ([Done], _) -> succeedHead
    (Cut:_, _) -> cutHead
    (Invoke (Builtin bf):_, _) -> cur . hed .= [Done] >> bf
    (_, [Done]) -> tailCall
    (_, [Cut, Done]) -> tailCut
    (_, _) -> pushCall

unifyStep h = do
  g <- use (cur . gol)
  case (h, g) of
    (U hd:_, U gd:_) -> unify hd gd
    (_, _) -> err "invalid unification code"

{- helpers -}
backtrack :: InterpFn
backtrack = do
  chos <- use cho
  case chos of
    (c:cs)
      {- if available, restore the easiest choicepoint -}
     -> do
      cur .= c
      cho .= cs
      continue
    {- if there's no other choice available, answer no -}
    _ -> finish False

advance = do
  cur . gol %= tail
  continue

advanceHead = do
  cur . hed %= tail
  continue

{- resolution steps -}
doCut = use (cur . cut) >>= assign cho

retCut = do
  rc <- use (cur . retcut)
  when rc $ do
    doCut
    cur . retcut .= False

cutHead = do
  use (cur . hcut) >>= assign cho
  advanceHead

cutGoal = doCut >> advance

openGoal :: IR.Id -> InterpFn
openGoal fn = do
  def <- (M.!? fn) <$> use defs
  case def of
    Just hs@(_:_) -> do
      advance
      cur . hvar .= emptyScope
      cur . unis .= arity fn
      cc <- use cur
      oldcho <- use cho
      let (newcur:newcho) = [cc & hcut .~ oldcho & hed .~ h | h <- hs]
      cur .= newcur
      cho %= (newcho ++)
      continue
    _ -> do
      StrTable _ _ itos <- use strtable
      err $ "no definition: '" ++ (itos M.! str fn) ++ "'/" ++ show (arity fn)

pushCall :: InterpFn
pushCall = do
  sgol <- use (cur . gol)
  sgvar <- use (cur . gvar)
  ngol <- use (cur . hed)
  ngvar <- use (cur . hvar)
  scut <- use (cur . cut)
  ncut <- use (cur . hcut)
  sretcut <- use (cur . retcut)
  cur . stk %= ((sgol, sgvar, scut, sretcut) :)
  cur . gol .= ngol
  cur . gvar .= ngvar
  cur . cut .= ncut
  cur . hed .= []
  cur . hvar .= emptyScope
  cur . hcut .= []
  cur . retcut .= False
  continue

tailCall :: InterpFn
tailCall = do
  ngol <- use (cur . hed)
  ngvar <- use (cur . hvar)
  cur . gol .= ngol
  cur . gvar .= ngvar
  cur . hed .= []
  cur . hvar .= emptyScope
  cur . hcut .= []
  continue

tailCut :: InterpFn
tailCut = do
  cur . retcut .= True
  advance
  tailCall

succeedHead :: InterpFn
succeedHead = do
  cur . hed .= []
  cur . hvar .= emptyScope
  cur . hcut .= []
  continue

succeedGoal :: InterpFn
succeedGoal = do
  retCut
  st <- use (cur . stk)
  case st of
    [] -> do
      cur . gol .= []
      finish True
    ((sgol, sgvar, scut, sretcut):st') -> do
      zoom cur $ do
        gol .= sgol
        gvar .= sgvar
        cut .= scut
        retcut .= sretcut
        stk .= st'
      continue

pushChoices :: [Code] -> InterpFn
pushChoices cs = do
  advance
  g <- use (cur . gol)
  let (ng:ogs) = [c ++ g | c <- cs]
  cc <- use cur
  cur . gol .= ng
  cho %= ([cc & gol .~ og | og <- ogs] ++)
  continue

{- unification -}
uNext = do
  advanceHead
  advance
  cur . unis -= 1

uOK :: InterpFn
uOK = uNext >> continue

unify :: Datum -> Datum -> InterpFn
unify VoidRef VoidRef = uOK
unify (Atom _) VoidRef = uOK
unify VoidRef (Atom _) = uOK
unify (Atom a) (Atom b)
  | a == b = uOK
unify (Number _) VoidRef = uOK
unify VoidRef (Number _) = uOK
unify (Number a) (Number b)
  | a == b = uOK
unify (Struct a) VoidRef = do
  uNext
  cur . gol %= (replicate (arity a) (U VoidRef) ++)
  cur . unis += arity a
  continue
unify VoidRef (Struct a) = do
  uNext
  cur . hed %= (replicate (arity a) (U VoidRef) ++)
  cur . unis += arity a
  continue
unify (Struct a) (Struct b)
  | a == b = do
    cur . unis += arity a
    uOK
unify (LocalRef _) VoidRef = uOK
unify VoidRef (LocalRef _) = uOK
unify (LocalRef lr) g = do
  r <- findLocalRef hvar lr
  unify (HeapRef r) g
unify h (LocalRef lr) = do
  r <- findLocalRef gvar lr
  unify h (HeapRef r)
unify VoidRef (HeapRef _) = uOK
unify (HeapRef _) VoidRef = uOK
unify (HeapRef hr) (HeapRef gr) = do
  [h, g] <- traverse deref [hr, gr]
  case (h, g) of
    (BoundRef ha _, BoundRef ga _)
      | ha == ga -> uOK
    (BoundRef ha hv@(Struct Id {arity = arity}), BoundRef ga gv@(Struct _)) ->
      if hv /= gv
        then backtrack
        else do
          writeHeap ha (HeapRef ga) -- cycle unification trick thanks to Bart Demoen
          uNext
          cur . hed %= ([U . HeapRef $ ha + i | i <- [1 .. arity]] ++)
          cur . gol %= ([U . HeapRef $ ga + i | i <- [1 .. arity]] ++)
          cur . unis += arity
          continue
    (BoundRef _ hv, BoundRef _ gv)
      | hv == gv -> uOK
    (FreeRef ha, FreeRef ga) -> writeHeap ha (HeapRef ga) >> uOK
    (FreeRef ha, BoundRef ga _) -> writeHeap ha (HeapRef ga) >> uOK
    (BoundRef ha _, FreeRef ga) -> writeHeap ga (HeapRef ha) >> uOK
    _ -> backtrack
unify s@(Struct _) (HeapRef gr) = setStruct gr s gol
unify (HeapRef hr) s@(Struct _) = setStruct hr s hed
unify (Struct sa) (Struct sb)
  | sa == sb = cur . unis += arity sa >> uOK
unify h (HeapRef gr) = setSimple gr h
unify (HeapRef hr) g = setSimple hr g
unify _ _ = backtrack

{- unification reference-handling tools -}
findLocalRef :: Lens' Cho (M.Map Int Int) -> Int -> PrlgEnv Int
findLocalRef store lr = do
  a' <- (M.!? lr) <$> use (cur . store)
  case a' of
    Nothing -> do
      a <- newHeapVar
      cur . store %= M.insert lr a
      pure a
    Just a -> pure a

setStruct :: Int -> Datum -> Lens' Cho Code -> InterpFn
setStruct addr s@(Struct Id {arity = arity}) code = do
  x <- deref addr
  let cont nc = do
        uNext
        cur . unis += arity
        cur . code %= (map U nc ++)
        continue
  case x of
    FreeRef a -> putHeapStruct a s >>= cont
    BoundRef a s'@(Struct _)
      | s == s' -> cont [HeapRef (a + i) | i <- [1 .. arity]]
    _ -> backtrack

setSimple addr val = do
  x <- deref addr
  case x of
    FreeRef a -> writeHeap a val >> uOK
    BoundRef _ val'
      | val == val' -> uOK
    _ -> backtrack