square root matrix works
This commit is contained in:
parent
5928e45a71
commit
171c660d3d
|
@ -126,7 +126,7 @@ public:
|
|||
polynomial gcd (polynomial, gf2m&);
|
||||
bool is_irreducible (gf2m&);
|
||||
void generate_random_irreducible (uint s, gf2m&, prng&);
|
||||
void compute_square_root_matrix (std::vector<polynomial>&, gf2m&);
|
||||
bool compute_square_root_matrix (std::vector<polynomial>&, gf2m&);
|
||||
};
|
||||
|
||||
/*
|
||||
|
|
10
lib/gf2m.cpp
10
lib/gf2m.cpp
|
@ -3,9 +3,6 @@
|
|||
|
||||
using namespace ccr;
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
/*
|
||||
* helpful stuff for arithmetic in GF(2^m) - polynomials over GF(2).
|
||||
*/
|
||||
|
@ -22,13 +19,6 @@ inline uint gf2p_add (uint a, uint b)
|
|||
return a ^ b;
|
||||
}
|
||||
|
||||
void outbin (const char*n, uint x)
|
||||
{
|
||||
cout << n << " = ";
|
||||
for (int i = 31; i >= 0; --i) cout << (1 & (x>>i) );
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
uint gf2p_mod (uint a, uint p)
|
||||
{
|
||||
if (!p) return 0;
|
||||
|
|
|
@ -74,10 +74,8 @@ polynomial polynomial::gcd (polynomial b, gf2m&fld)
|
|||
if (a.degree() < 0) return b;
|
||||
for (;;) {
|
||||
if (b.zero() ) return a;
|
||||
dump (a);
|
||||
a.mod (b, fld);
|
||||
if (a.zero() ) return b;
|
||||
dump (b);
|
||||
b.mod (a, fld);
|
||||
}
|
||||
//unreachable
|
||||
|
@ -117,20 +115,20 @@ void polynomial::generate_random_irreducible (uint s, gf2m&fld, prng& rng)
|
|||
item (s) = 1; //degree s
|
||||
item (0) = 1 + rng.random (fld.n - 1); //not divisible by x^1
|
||||
for (uint i = 1; i < s; ++i) item (i) = rng.random (fld.n);
|
||||
dump (*this);
|
||||
while (!is_irreducible (fld) ) {
|
||||
dump (*this);
|
||||
uint pos = rng.random (s);
|
||||
item (pos) = pos == 0 ?
|
||||
(1 + rng.random (fld.n - 1) ) : rng.random (fld.n);
|
||||
}
|
||||
}
|
||||
|
||||
void polynomial::compute_square_root_matrix (vector<polynomial>&r, gf2m&fld)
|
||||
bool polynomial::compute_square_root_matrix (vector<polynomial>&r, gf2m&fld)
|
||||
{
|
||||
// step 1, generate a square matrix of squares mod poly.
|
||||
int d = degree();
|
||||
if (d < 0) return;
|
||||
r.resize (d);
|
||||
if (d < 0) return false;
|
||||
vector<polynomial>l;
|
||||
l.resize (d);
|
||||
polynomial col, t;
|
||||
for (int i = 0; i < d; ++i) {
|
||||
col.clear();
|
||||
|
@ -140,8 +138,56 @@ void polynomial::compute_square_root_matrix (vector<polynomial>&r, gf2m&fld)
|
|||
col.mult (t, fld);
|
||||
col.mod (*this, fld);
|
||||
col.resize (d, 0);
|
||||
r[i] = col;
|
||||
l[i] = col;
|
||||
}
|
||||
// step 2, gauss-jordan inverse to unit matrix
|
||||
r.resize(d);
|
||||
for(int i=0;i<d;++i) {
|
||||
r[i].clear();
|
||||
r[i].resize(d,0);
|
||||
r[i][i]=1;
|
||||
}
|
||||
|
||||
//TODO gauss
|
||||
|
||||
#define add_row_mult(from,to,coeff) \
|
||||
for(int c=0;c<d;++c) { \
|
||||
l[c][to]=fld.add(l[c][to],fld.mult(l[c][from],coeff));\
|
||||
r[c][to]=fld.add(r[c][to],fld.mult(r[c][from],coeff));\
|
||||
}
|
||||
|
||||
#define row_mult(row,coeff) \
|
||||
for(int c=0;c<d;++c) {\
|
||||
l[c][row]=fld.mult(l[c][row],coeff);\
|
||||
r[c][row]=fld.mult(r[c][row],coeff);\
|
||||
}
|
||||
|
||||
//gauss
|
||||
uint a;
|
||||
int i,j;
|
||||
for(i=0;i<d;++i) {
|
||||
if(l[i][i]==0) {
|
||||
//find nonzero
|
||||
for(j=i+1;j<d;++j) if(l[i][j]!=0) {
|
||||
add_row_mult(j,i,1);
|
||||
break;
|
||||
}
|
||||
if(j==d) return false;
|
||||
a=fld.inv(l[i][i]); //normalize
|
||||
row_mult(i,a);
|
||||
//zero the col
|
||||
for(j=i+1;j<d;++j) if(l[i][j]!=0) {
|
||||
a=l[i][j]; //"minus". luckily on GF(2^m) x+x=0.
|
||||
add_row_mult(i,j,a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//jordan
|
||||
for(i=d-1;i>=0;--i)
|
||||
for(j=0;j<i;++j) {
|
||||
a=l[i][j];
|
||||
if(a==0) continue;
|
||||
add_row_mult(i,j,a);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue